Development of DGK Inhibitors, hit validation of initial HTS

Jennyfer Goujon-Ricci¹, Kirsty Wilson¹, Nahoum Anthony², Robbie Burton², Natalie Tatum², Susan Tudhope², Mike Waring¹, Steve Wedge², Martin Noble², Ian Hickson², Ian Hardcastle¹

Cancer Research Horizons The rapeutic Innovation: ¹Chemistry, School of Natural and Environmental Sciences, Newcastle University, Bedson Building, Newcastle upon Tyne, NE1 7RU, U.K.

²Translational and Clinical Research Institute, Faculty of Medical Sciences, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, U.K.

TARGET HYPOTHESIS

Disease setting: Immune oncology, solid tumours.

- **DAG regulates immune cell signalling and activation** (T-cells and NK cells).
- Diacylglycerol kinase zeta (**DGK**) catalyses the phosphorylation of DAG to PA.
- DGK has 10 isoforms, ζ and α are those mostly expressed in the immune system.
- Limiting the pool of DAG effects a positive signalling through T-cells.

OBJECTIVES and METHODOLOGY

- Tumour evasion of immune responses linked to **DGKζ and DGKα deregulation**. •
- **Inhibition** of both DGK ζ and DGK α to maintain higher levels of DAG, promote T cell \bullet proliferation and anti-tumour activity.
- Thus, activating the immune response in "cold" tumours, resulting in activation of • cytokine and inflammatory responses to stimulate the immune system to kill tumours.
- Potent mixed inhibitors targeting DGK ζ and DGK α identified at the onset of the project, • the specific effects of selective inhibition remained unexplored.

AZAINDOLE SERIES

- From initial triage, cluster of 40 compounds with $IC_{50} < 10 \mu M$.
- SAR-study around two regioisomers was carried out.

Library Synthesis:

T-cell activation

Schematic of early T cell activation through binding to a dendritic cell (DC). Subsequently, co-stimulation occurs through DC-bound CD86, CD80, OX40L and 4-1BBL. This induces full activation and effector function in the T cell.¹

- Finding a "first-in-class" oral inhibitor of DGKζ.
- Screening of >100k compounds by HTS (done at Charles River).

2 Series expanded using in-house developed **ADP-glo assay** and *in vitro* cellular testing.

DIHYDROQUINOLINE SERIES

- Singleton choice with $IC_{50} < 10 \mu M$.
 - Br atom offers excellent synthetic vector for growing the fragment.
- SAR around this region and around the "southern" part of the hit is shown below.

DGKζ IC₅₀ = 8 μ M DGK α IC₅₀ > 250 μ M

Library Synthesis:

DGK α IC₅₀ (μ M)

>250

H N N N H IC ₅₀ μM	MeO	· —		CF3	× —	Me	Me Me-N	MeO
	49	19	20	204				
	21	21	18*	23	37	37	32	34
MeO ₂ S ^{-N}	148	165	20*	95				
Y° € ST	50		>100		58	61	84	9
Me	44		85		42	70	76	71
	30		9		6	23	23	21

* Original hits from HTS, values are for retest in ADP-Glo assay (in house).

COMPETITORS

BMS has 2 optimized leads. Very potent but not selective. IC_{50} measured using biochemical lipid kinase assay.²

tolerability and selectivity.

BMS-502 - R = CN, $R_1 = NO_2$, $R_2 = H$, $R_3 = F$ IC_{50} DGKζ = 0.002 μM, α = 0.005 μM

BMS-332 - R = CN, R₁ = H, R₂ = Me, R₃ = Me IC₅₀ DGKζ = 0.008 μM, α = 0.009 μM

>250

>250

- SAR on "southern" part = large bulky ketone helps with
- potency.
- Better interactions to be found?

ACKNOWLEDGEMENTS

>250

50

89

The authors thank CRUK and Astex Pharmaceuticals for the fundings to carry out this research.

CONCLUSION

- Extensive synthetic efforts to expand both series with SAR studies.
- **Azaindole series** hindered by lengthy synthesis and poor reactivity (*e.g.* Buchwald-Pd coupling in last step).
- **Dihydroquinolinone series** widely expanded and explored, **12-fold potency gain with ethynyl-linker** (Potential *hit-to-lead*).
- Unfortunately, no DGK α IC₅₀ for all compounds due to assay format / protein production / purification.
- Competitors are in clinic with very potent (but not selective) candidates.
- 1. Cavanagh M and Findlay EG, BSI
- 2. Wichroski et al., Sci. Transl. Med. 2023, 15 (719)

jennyfer.goujon-ricci@newcastle.ac.uk

X @JenGoujon_Ricci